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Abstract. This work solves the problem of elaborating Ganea and
Whitehead definitions for the tangential category of a foliated manifold.
We develop these two notions in the category S-Top of stratified spaces,
that are topological spaces X endowed with a partition F and compare
them to a third invariant defined by using open sets. More precisely,
these definitions apply to an element (X,F) of S-Top together with a
class A of subsets of X; they are similar to invariants introduced by
M. Clapp and D. Puppe.

If (X,F) ∈ S-Top, we define a transverse subset as a subspace A of
X such that the intersection S ∩ A is at most countable for any S ∈ F .
Then we define the Whitehead and Ganea LS-categories of the stratified
space by taking the infimum along the transverse subsets. When we
have a closed manifold, endowed with a C1-foliation, the three previous
definitions, with A the class of transverse subsets, coincide with the
tangential category and are homotopical invariants.
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The Lusternik-Schnirelmann category (LS-category in short) of a smooth
manifold M is an invariant putting in relation the topological complexity of
M with the behavior of smooth functions defined on M . In particular, when
the manifold is compact, it is a lower bound of the number of critical points
for any smooth function. This numerical invariant can also be defined for
a topological space X and reveals itself as a homotopy type invariant. The
LS-category cat (X) is the least natural number n such that there exists a
cover of X by n + 1 open sets, each of them being contractible to a point
inside X.

H. Colman and the second author ([5] and [6], see also [3]) have adapted
this definition to the case of a foliated manifold (M,F). Indeed, they in-
troduced two invariants, one which refers to the transverse structure and a
second one, the tangential category, cat F (M), see Definition 18 for a pre-
cise statement. Our paper is concerned with this tangential category, also
investigated by W. Singhof and E. Vogt [15]. These two authors prove that
the tangential category is less than or equal to dim F +1, a result similar to
the fact that the dimension of a CW-complex plus 1 is an upper bound for
its LS-category. Some other results of [15] will be crucial for our work and
we will quote them precisely in the last section. In [4], H. Colman and S.
Hurder prove, for instance, that the nilpotency index of the reduced filtered
cohomology is a lower bound of the tangential category.

In [11], S. Hurder says that the homotopy-theoretic interpretation of
cat F (M) corresponding to the Whitehead and Ganea definitions of cate-
gory is “one of the most important open problems in the subject”. In the
present work we give for the tangential category several equivalent defini-
tions inspired by the Whitehead procedure (using the fat wedge), and by the
Ganea construction (using Milnor’s classifying spaces). As in the classical
case, we do that in the topological framework, considering the most gen-
eral setting of topological spaces, endowed with a partition. We call them
stratified spaces and denote by S-Top the category of stratified spaces and
stratified maps.

Before giving the content of the paper, we present our general strategy.
Recall that the LS-category of a space X uses open sets that are contractible
to a point inside X. If X is path-connected, one can use contractions on a
specific point and work with pointed tools as fat wedges and Ganea fibra-
tions. These types of constructions are also present in our work and, at a
first look, we should distinguish some transverse structure for a foliation.
But we cannot do this, because the definition of tangential LS-category is
made of tangentially contractible open sets without specific transverse set.
We solve this contradiction by taking an adequate definition of topological
transverse set and the infimum on all transverse sets. It is a priori unclear
that this process gives the tangential LS-category of a foliation and Section 4
contains a proof of that fact.

The second main point is the equality between the invariants coming from
the Whitehead and Ganea constructions. As the first author showed in [8],
one has only to prove that S-Top is a closed model category satisfying the
Cube Lemma. Instead of that, we take here a shortcut: the heart of the
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Cube Lemma needs only a structure of fibration category as it appears in
the proof of Theorem B. Therefore, in Theorem A of Section 1, we prove
that S-Top is a category of fibrations, which is sufficient for our purpose.

In Section 2, we consider a stratified pair (X,A,FX ), where (X,FX )
is a stratified space and A a subset of X. We introduce the Whitehead
and Ganea constructions which give the notions of Whitehead and Ganea
category, respectively denoted Whcat (X,A,FX ) and Gcat (X,A,FX ). We
prove their equality in Theorem B. These constructions are adaptations of
those by M. Clapp and D. Puppe [2] in the case of topological spaces. In
a third step, we want a notion of LS-category for (X,A,FX ) using open
sets. An open subset U of X is said A-categorical if there is a stratified
homotopy defined on (U,FU ) between the identity on U and a map with
values in A, see Definition 7. (The induced stratification FU is composed
of the connected components of the intersections U ∩ S, S ∈ FX .) This
notion of A-categorical open set brings a definition of open LS-category,
Ocat (X,A,FX ), in the usual way. When A is a B stratified neighborhood
deformation (in short B-SND, see Definition 11) and X a normal space,
we prove that Ocat (X,B,FX ) ≤ Whcat (X,A,FX ) ≤ Ocat (X,A,FX ), see
Theorem C.

In Section 3, we introduce the transverse subsets which are the key for
the comparison with the tangential LS-category of foliations. If (X,FX ) ∈
S-Top, a subset A of X is called transverse to FX if the intersection A ∩ S
is at most countable for all strata S ∈ FX . The transverse subsets to a
foliation own this property, see [15]. In the definition of the tangential LS-
category of foliations, there is no predetermined transverse set A, so we de-
fine Ocat (X,FX ) as the infimum of the integers Ocat (X,A,FX ) when A is
transverse to FX (analogously for Whcat (X,A,FX ) and Gcat (X,A,FX )).
In Theorem D, we prove that Ocat (X,FX ) is a homotopy invariant in
S-Top.

Finally, in Section 4, we consider a smooth closed manifold with a C1-
foliation, (M,FM ), and prove the equalities:

cat F (M) = Ocat (M,FM ) = Gcat (M,FM ) = Whcat (M,FM ),

see Theorem E. We end with the example of the Reeb foliation on the torus
T 2 by giving a transverse set A that is an A-SND.

The second author would like to thank the University of Sciences and
Technology of Lille and the first and third authors the University of Santiago
de Compostela for their hospitality during the realization of this work.

1. The category of stratified spaces

A stratified space (X,FX ) is a topological space together with a partition
FX whose elements S ⊆ X are path-connected subspaces. We denote by
∼FX

(or ∼X if there is no ambiguity) the equivalence relation associated to
the partition FX of X and call strata the elements S of FX . A stratified
map between stratified spaces is a continuous map compatible with the
equivalence relations.
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Let Top be the category of topological spaces and continuous maps and
S-Top be the category of stratified spaces and stratified maps. We first
observe that the category S-Top has finite direct and inverse limits. This
is obvious from the corresponding limits in Top.

The stratification on a pull-back (X,FX ) ×(B,FB) (Y,FY ) = (P,FP ) is
defined by (x, y) ∼P (x′, y′) if, and only if,

x ∼X x′ and y ∼Y y′.

If we have a commutative diagram in S-Top:

(Z,FZ )

i
��

j
// (Y,FY )

g

��

(X,FX )
f

// (B,FB)

then the map induced by the pull-back in Top,
(i, j) : Z → P = X ×B Y ,

is a stratified map in S-Top, because if z ∼Z z′, then i(z) ∼X i(z′) and
j(z) ∼Y j(z′), so (i, j)(z) = (i(z), j(z)) ∼P (i(z′), j(z′)) = (i, j)(z′).

The stratification on a push-out (X,FX ) ∨(B,FB) (Y,FY ) = (S,FS) of
f : (B,FB) → (X,FX ) and g : (B,FB) → (Y,FY ) is defined by

• x ∼S x′ if, and only if,
– either : x ∼X x′,
– or : x ∼X f(b) and x′ ∼X f(b′) with g(b) ∼Y g(b′), (†)

• a similar formula for y ∼S y′,
• and x ∼S y if, and only if,

x ∼X f(b) and y ∼Y g(b) (‡).

If we have a commutative diagram in S-Top:

(B,FB)

f
��

g
// (Y,FY )

j

��

(X,FX )
i

// (Z,FZ)

then the map induced by the push-out in Top,
[i, j] : S = X ∨B Y → Z,

is a stratified map in S-Top, because if x ∼S x′, with condition (†), then
i(x) ∼ if(b) = jg(b) ∼ jg(b′) = if(b′) ∼ i(x′) and if x ∼S y, with condition
(‡), then i(x) ∼ if(b) = jg(b) ∼ j(y).

Denote by I the interval [0, 1] endowed with the trivial partition FI =
{[0, 1]} and define a notion of homotopy in S-Top as follows.

Definition 1. Two stratified maps, f, g : (X,FX ) → (Y,FY ), are called S-
homotopic if there exists a stratified map H : (X,FX ) × (I,FI) → (Y,FY )
such that f = F (−, 0) and g = F (−, 1). We denote this relation by f ≃S g.

Recall that Top can be endowed with two structures of closed model
category. The first one (see [14]) has for fibrations the Serre fibrations and
for weak equivalences the classical weak equivalences. The second one (see
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[16]) has for fibrations the Hurewicz fibrations and for weak equivalences the
homotopy equivalences. For the study of S-Top, we consider a situation “à
la Hurewicz” and prove that S-Top is a fibration category, in the sense of
Baues (see [1, I §1a]), which is sufficient for our objective.

Theorem A. The category S-Top is a fibration category with
– fibrations, the stratified maps f : (X,FX ) → (Y,FY ) having the S-

homotopy lifting property;
– weak equivalences, the stratified maps f : (X,FX ) → (Y,FY ) such that

there exists a stratified map g : (Y,FY ) → (X,FX) with f ◦ g ≃S idY and
g ◦ f ≃S idX .

Note that the full subcategory of stratified spaces (X,FX ) with FX formed
of the path-connected components of X equals Top with its structure of fi-
bration category. In particular, a weak equivalence in S-Top is a weak
equivalence in Top.

Proof. As the proof is an adaptation of [16] to the stratified case, we only
sketch it. Recall that a fibration category is a category satisfying the axioms
(F1), (F2), (F3) and (F4) of [13].

(F1) The isomorphisms are weak equivalences and also fibrations. Given
two maps

A
f
−→ B

g
−→ C

if any two of f, g, gf are weak equivalences, then so is the third. The com-
posite of fibrations is a fibration. The verification of these properties is
immediate.

(F2) Consider a pull-back in S-Top:

(P,FP )

q

��

g
// (E,FE)

p

��

(Y,FY )
f

// (B,FB)

We have to show that if p is a fibration of S-Top, then so is q. Indeed,
from the universal property, the map q has the S-homotopy lifting property
and therefore is a fibration of S-Top.

We have also to show that if p is a trivial fibration of S-Top, then so
is q. As p is a weak equivalence, there exists σ : (B,FB) → (E,FE) such
that p ◦ σ ≃S idB and σ ◦ p ≃S idE. As p is a fibration, we may suppose
that p ◦ σ = idB . From the universal property, we deduce the existence of
µ : (Y,FY ) → (P,FP ) such that g ◦ µ = σ ◦ f and q ◦ µ = idY . We have
to show that µ ◦ q ≃S idP . For that, we follow the proof in the case of the
category Top [16], adding the ad hoc argument for the stratification. We
briefly recall the main steps for the convenience of the reader:

• First, one knows (see [9]) that the homotopy H between σ ◦ p and
the identity on E can be chosen such that p ◦ H(−, t) = p for any
t ∈ I.
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• With that homotopy H, we check the commutativity of the following
diagram, where proj means a projection onto one factor.

P × I
G

||

g×id
//

q×id

��

E × I

p×id

��

H

||xx
x
x
x
x
x
x
x

��

P
g

//

q

��

E

p

��

Y × I
f×id

//

proj

||xx
x
x
x
x
x
x
x

B × I

proj
||xx

x
x
x
x
x
x
x

Y
f

// B

From the universal property, there exists G : (P,FP ) × (I,FI) →
(P,FP ) such that g ◦ G = H ◦ (g × id) and q ◦ G = proj ◦ (q × id).
This map G satisfies G(−, 1) = id and G(−, 0) = µ ◦ q as wanted.

On the other hand, it is easily checked that any object is fibrant, which
implies, as quoted by H. Baues (see [1, Lemma 1.4 p.7]), that the category
S-Top is ‘proper’, i.e. if we assume that f is a weak equivalence, so is g.

(F3) Let f : (X,FX ) → (Y,FY ) be a map in S-Top. We have to write this
map as f = p◦s where s is a weak equivalence in S-Top and p is a fibration
in S-Top. Recall that Y I denotes the space of continuous maps ω : I → Y .
Here we denote by (Y,FY )I the set of continuous maps, ω : I → Y , such
that ω(I) is included in an element S of FY , together with the partition
formed of the subsets SI with S ∈ F . The proof of the axiom (F3) follows
the classical way [16], substituting Y I by (Y,FY )I . The different steps of
the proof are:

• The map p1 : (Y,FY )I → (Y,FY ) defined by p1(ω) = ω(1) is a fibra-
tion in S-Top.

• The map s1 : (Y,FY ) → (Y,FY )I , sending y to the constant path ŷ,
is an S-homotopy inverse of p1.

• If we denote by Pf the pull-back of p1 and f , the map p0 : Pf → Y
defined by p0(ω, x) = ω(0) is a fibration.

• The map sf : (X,FX ) → Pf , given by x 7→ (f̂(x), x), is a weak
equivalence of S-Top that gives the desired decomposition of f as
f = p0 ◦ sf .

(F4) We check easily that every trivial fibration of S-Top has a section,
which implies (F4). �

2. Lusternik-Schnirelmann category of stratified pairs

Definition 2. Let (X,FX ) ∈ S-Top be a stratified space and A be a topo-
logical subspace of X. The induced stratification (A,FA) has for strata the
connected components of the intersections A ∩ S, with S ∈ FX . The pair
(A,FA) is called a stratified subspace of (X,FX ) and (X,A,FX ) a stratified
pair.
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If f : (X,FX ) → (Y,FY ) is a stratified map, we observe from the previous
definition, that the restriction f : (X,FX ) → (f(X),Ff(X)) is also stratified.

2.1. Ganea construction: the invariant Gcat (X,A,F).

Definition 3. The ith Ganea space Gi(X,A) of a stratified pair (X,A,FX )
is the set of (i + 1)-uples (α1, . . . , αi+1) of paths in (X,FX )I , such that
α1(1) = · · · = αi+1(1) and there exists k, 1 ≤ k ≤ i + 1, with αk(0) ∈ A.

We observe from this definition that, for any element (α1, . . . , αi+1) of
Gi(X,A), there is an associated element S of the partition FX such that
αj(I) ⊂ S, for all j = 1, . . . , i + 1.

We put on Gi(X,A) the stratification induced by the product stratifica-
tion and the stratification of XI , and denote by Gi(X,A,FX ) this stratified
space. The ith Ganea fibration gi : Gi(X,A,FX ) → (X,FX ) is defined by
gi(α1, . . . , αi+1) = α1(1).

Definition 4. The Ganea LS-category of a stratified pair (X,A,FX ) is
the least integer n such that the nth Ganea fibration gn : Gn(X,A,FX ) →
(X,FX ) has a stratified section. We denote it by Gcat (X,A,FX ).

2.2. Whitehead construction: the invariant Whcat (X,A,FX ).

Definition 5. The ith fat wedge of a stratified pair (X,A,FX ) is the subset
Ti(X,A) of the product Xi+1 formed of the elements (x1, . . . , xi+1) such that
there exists k, 1 ≤ k ≤ i + 1, with xk ∈ A.

We endow it with the stratification induced from the stratification of the
product (X,FX )i+1 and denote this stratified space by Ti(X,A,FX ).

Definition 6. The Whitehead LS-category of a stratified pair (X,A,FX )
is the least integer n such that the diagonal ∆ : (X,FX ) → (X,FX )n+1

factors up to S-homotopy through the inclusion map tn : Tn(X,A,FX ) →
(X,FX )n+1. We denote it by Whcat (X,A,FX ).

If A = {∗}, they coincide with the classical ones, see [7], [8], [2] or [10] for
more details.

2.3. Open LS-category: the invariant Ocat (X,A,FX ). In this para-
graph, we provide a third definition using open sets. First we precise the
notion of categorical subsets in the context of stratified spaces.

Definition 7. Let (X,A,FX ) be a stratified pair. A non-empty subset U of
X is said to be A-categorical if there is a stratified homotopy H : (U,FU )×
(I,FI) → (X,FX ) such that H(x, 0) = x and H(x, 1) ∈ A for any x ∈ U .
We call H a stratified deformation of U into A.

Observe that, as in the classical case, the sets H(U, t), with t ∈ I, are not
necessarily contained in U . With the previous definition, we introduce the
open LS-category of the stratified pair (X,A,FX ).

Definition 8. The open LS-category of a stratified pair (X,A,FX ) is the
least integer n such that there exists a covering of X by (n + 1) open sets
which are A-categorical. We denote it by Ocat (X,A,FX ).
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We write also Ocat (X,A,FX ) = ∞ if such a covering does not exist.
Observe that Ocat (X,X,FX ) = 0 and that the finiteness of Ocat (X,A,FX )
implies that A cuts each stratum.

Example 9. Examples with an infinite value for Ocat can be obtained easily.
For space X, we take the plane R

2 stratified by the orbits of the action of
the rotation group SO(2). Let A be the half-ray Ox. We observe that any
open subset U containing the singular orbit O contains also a circle C which
cannot be contracted to some point of A ∩ C by a stratified deformation of
U . Therefore Ocat (R2, Ox,FR2) = ∞.

The next easy result will be used in the proof of Theorem D.

Proposition 10. Let (X,A,FX ) be a stratified pair. If f : (X,FX ) →
(Y,FY ) is a stratified map with a right S-homotopical inverse g, then

Ocat (Y, f(A),FY ) ≤ Ocat (X,A,FX ).

Proof. Let U ⊆ X be an A-categorical open set and H : (U,FU )× (I,FI) →
(X,FX ) be a stratified deformation of U into A. On the open set V =
g−1(U), we define a stratified deformation f◦H◦(g×idI) : (V,FV )×(I,FI) →
(Y,FY ) into f(A). The inequality follows. �

2.4. Comparison of the three invariants.

Theorem B. For any stratified pair (X,A,FX ), we have the equality
Whcat (X,A,FX ) = Gcat (X,A,FX ).

Proof. We first define a stratified map εn : Gn(X,A,FX ) → Tn(X,A,FX ) by
εn(α1, . . . , αn+1) = (α1(0), . . . , αn+1(0)). The following diagram is clearly
homotopy commutative:

Gn(X,A,FX )
gn

//

εn

��

(X,FX )

∆
��

Tn(X,A,FX )
tn

// (Xn+1,FXn+1)

The proof is reduced to the fact that this diagram is a homotopy pull-back.
For that, we need to determine the associated fibration to the diagonal ∆,
which is obtained from the pull-back

(P,FP ) //

��

(Xn+1,FXn+1)I

��

(X,FX )
∆

// (Xn+1,FXn+1)

By construction, (P,FP ) is the space of (n+1)-uples (α1, . . . , αn+1) of paths
in (X,FX )I , such that α1(1) = · · · = αn+1(1). The evaluation map to
0 of these paths in Xn+1 is a fibration equivalent to the diagonal. So if
we take the pull-back of this map and of the map tn : Tn(X,A,FX ) →
(Xn+1,FXn+1), we get the homotopy pull-back of tn and of the diagonal.
But this is exactly the Ganea space Gn(X,A,FX ). �
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We prove now the equivalence between the Whitehead and the open-
set definitions, under some hypotheses, as in the classical case where one
needs the existence of a contractible neighborhood of the base point. The
corresponding notion is given by the following definition.

Definition 11. Let (X,FX ) be a stratified space and let A,B be subsets
of X. We say that A is a B stratified neighborhood deformation (in short
B-SND) if A has some open neighborhood which is a B-categorical set.

Theorem C. Let (X,FX ) be a stratified space and A be a subspace of X.

(1) If the space X is normal, then we have the inequality:
Whcat (X,A,FX ) ≤ Ocat (X,A,FX ).

(2) If A is a B-SND, then we have the inequality:
Ocat (X,B,FX) ≤ Whcat (X,A,FX ).

Proof. 1) Suppose Ocat (X,A,FX ) ≤ n. There is a covering of X by
open sets, U0, . . . , Un, and stratified deformations Hi : (Ui,FUi

)× (I,FI) →
(X,FX ) into A, for i = 0, . . . , n. As X is normal, there exists a covering
of X by open sets, W0, . . . ,Wn, such that W i ⊂ Ui, for i = 0, . . . , n. For
any i, we choose an Urysohn function ϕi : X → I such that ϕi(x) = 1 if
x ∈ W i and ϕi(x) = 0 if x /∈ Ui. We define now a continuous stratified map

Ĥi : (X,FX ) × (I,FI) → (X,FX) by

Ĥi(x, t) =

{
Hi(x, ϕi(x)t) if x ∈ Ui,

x otherwise.

We collect these maps in a continuous stratified map H : (X,FX )×(I,FI) →

(X,FX )n+1 defined by H(x, t) = (Ĥ0(x, t), . . . , Ĥn(x, t)). Observe that we
have H(x, 0) = (x, . . . , x) = ∆(x).

Set r(x) = H(x, 1). Since the Wi’s are a covering of X, for any point

x ∈ X, there is a Wj with x ∈ Wj . By definition of Ĥj, we have Ĥj(x, 1) =
Hj(x, 1) ∈ A. From the construction of the fat wedge, we have r(X) ⊂
Tn(X,A,FX ) and r is a lifting up to S-homotopy (by the S-homotopy H)
of the diagonal. By definition, we get Whcat (X,A,FX ) ≤ n.

2) Suppose Whcat (X,A,FX ) ≤ n. By definition, there are a stratified
map r : (X,FX ) → Tn(X,A,FX ) and a stratified homotopy H : (X,FX) ×
(I,FI) → (X,FX )n+1 between the diagonal ∆ and the composite tn ◦ r, see
Definition 6. As A is a B-SND, there exists also an open set N , A ⊂ N , and a
stratified homotopy G : (N,FN )×(I,FI ) → (X,FX ) of N with G(x, 1) ∈ B.

Let pi : Xn+1 → X be the (i + 1)th projection, 0 ≤ i ≤ n, we set hi =
pi◦tn◦r and Ui = h−1

i (N). Then, since r(X) ⊂ Tn(X,A,FX ) =
⋃n

i=0 p−1
i (A)

we have X =
⋃n

i=0 Ui. The Ui’s are a covering of X. They are B-categorical
with the homotopy Hi : Ui × I → X defined by

Hi(u, t) =

{
piH(u, 2t) if 0 ≤ t ≤ 1/2,

G(hi(u), 2t − 1) if 1/2 ≤ t ≤ 1.

It is routine to check that Hi is a continuous homotopy between the identity
and a map with values in B. As H, pi, G and hi are stratified maps, Hi is
stratified also and we have proved Ocat (X,B,FX ) ≤ n. �
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Let X be path-connected with the trivial stratification and let U be a
categorical open set in X. For any point u ∈ U and any x ∈ X, the subset
{u} is an {x}-SND. But, in the general case of a stratified space, being B-
SND depends on the stratification but also depends on B. This explains
why we need the notion of transverse sets, introduced in the next section.

3. Lusternik-Schnirelmann category of stratified spaces

First, we define the transverse subsets of a stratified space (X,FX ) which
play a fundamental role for the comparison of our previous invariants with
the tangential LS-category of foliations.

Definition 12. Let (X,FX ) be a stratified space. A subspace A ⊆ X is
transverse to the stratification if, for any stratum S ∈ FX , the set A ∩ S is
at most countable. We denote this property by A ⋔ FX .

As it is proved by W. Singhof and E. Vogt, [15], the transverse subspaces
of a foliation are transverse in the sense of Definition 12. We observe now
that, in Definition 18 of the tangential category of a foliation, the transverse
space which receives the stratified deformation is not predetermined. We
have therefore to take in account all the transverse subspaces associated to
tangential deformations.

Definition 13. Let (X,FX) be a stratified space. The open LS-category of
(X,FX ) is the infimum of the integers Ocat (X,A,FX ), when A runs along
the transverse subsets to FX :

Ocat (X,FX ) = Inf {Ocat (X,A,FX ) | A ⋔ FX} .

Similarly, we define the Whitehead LS-category and the Ganea LS-category
of the stratified space (X,FX ) by taking the infimum along the transverse
subsets. We denote them by Gcat (X,FX ) and Whcat (X,FX ) respectively.

The lower bound gives a homotopy invariant.

Theorem D. In the fibration category S-Top, the integer Ocat (−,−) is a
homotopy invariant.

Proof. Let f : (X,FX ) → (X ′,FX′) be a stratified map with homotopical
inverse g in S-Top. Let ∼ (resp. ∼′) be the equivalence relation generated
by FX (resp. FX′). The stratum containing x ∈ X (resp. f(x) ∈ X ′) is
denoted by Sx (resp. S′

f(x)). The proof is divided in several steps.

1) First, one proves that f induces a homeomorphism f̄ : X/∼ → X ′/∼′

between the quotient spaces. If y ∈ S′

f(x), there is a path γ : [0, 1] → S′

f(x)

joining y and f(x). Therefore g(y) and g(f(x)) are connected by a path
included in one stratum. As g ◦ f ≃S idX , the points g(f(x)) and x are in
the same stratum. This implies g(S′

f(x)) ⊆ Sx and ḡ ◦ f̄ = idX/∼. With a

similar argument, one has f̄ ◦ ḡ = idX′/∼′ .

2) Suppose f(S) ⊆ S′ where S and S′ are strata of FX and FX′ re-
spectively. Let A ⊂ X. If f(a) ∈ f(A) ∩ S′, then g(f(a)) ∈ S, from
part (1), and a ∈ S, because a and g(f(a)) are in the same stratum. This
implies f(A) ∩ S′ ⊆ f(A ∩ S). As the reverse inclusion is obvious, one has
f(A ∩ S) = f(A) ∩ S′.
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3) Let A ⊂ X such that f(A) is not transverse to FX′ , i.e. the set
f(A) ∩ S′ is uncountable for some stratum S′ ∈ FX′ . Let S ∈ FX with
g(S′) ⊆ S. From the equality f(A ∩ S) = f(A) ∩ S′, we deduce that A ∩ S
is uncountable. We have proved that A ⋔ FX implies f(A) ⋔ FX′ .

4) Proposition 10 implies the inequality

Inf {Ocat (X,A,FX ) | A ⋔ FX} ≥ Inf
{
Ocat (X ′, A′,FX′) | A′

⋔ FX′

}
.

As the opposite inequality follows by symmetry, we have proved the equality
Ocat (X,FX ) = Ocat (X ′,FX′). �

Remark 14. In the previous proof, we have used, in a fundamental way, the
fact that the image, by a weak equivalence of S-Top, of a transverse set of
(X,FX ) is a transverse set of (X ′,FX′). With the next example, we observe
that this is not true for the subsets A of (X,FX ) such that A ∩ S is totally
disconnected for any S ∈ FX . For similar reasons, the property A ∩ S of
topological dimension 0 does not fit also, see [12, Theorem, p. 302].

Example 15. Let f : X = S1 ×R → X ′ = S1 be the projection on the first
factor. We put on X and X ′ the trivial stratification with only one stratum.
Let ϕ : S1 → R be an application that is discontinuous at each point and let
A be the graph of ϕ. We see easily that f is a weak equivalence of S-Top,
that A is totally disconnected and f(A) = X ′ is not.

4. Tangential LS-category of foliations

The tangential LS-category of a foliated manifold was introduced by H.
Colman and the second author in [6], see also [3]. In this section we compare
it with our previous definitions of stratified LS-categories; all our manifolds
are C∞-manifolds.

Let M be a foliated manifold of class C0. The leaves of the foliation form
a partition FM of M . Moreover the definitions of foliated continuous maps
and tangential continuous homotopies correspond exactly to our definitions
of stratified maps and stratified homotopies. The induced foliation on an
open set of M coincides also with our induced stratification of Definition 2.
In the case of a foliation of class C∞ on a closed manifold, recall from [15,
Theorem 4.1] that the use of continuous maps or of C∞-maps does not
modify the tangential LS-category.

4.1. Definition of tangential LS-category.

Definition 16. An open set U ⊂ M (endowed with the induced foliation
FU ) is tangentially categorical if there exists a tangential homotopy H : U ×
I → M such that H(−, 0) is the inclusion and H(−, 1) is constant along the
leaves of U , that is H(−, 1) maps each leaf of FU onto some point. We call
H a tangential contraction.

Example 17. In general a tangential contraction defined on the categorical
open set U cannot be extended to the whole manifold M . For instance,
let M be the punctured plane R

2\{(0, 0)}, foliated by the horizontal lines
R × {t}. Let L be the closed leaf L = {(x, 0): x < 0} and take U = M\L.
Then U can be tangentially contracted to A = {1} ×R, but the contraction
cannot be extended to M .
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Definition 18. [3, 6] The tangential LS-category of the foliated manifold
(M,FM ) is the least integer n such that there exists a covering of M by (n+
1) open sets which are tangentially categorical. We denote it by catF (M).

4.2. Equivalence of the four invariants. This paragraph is devoted to
the proof of the equivalence between the tangential LS-category of a foliation
and our definitions of the LS-category of the corresponding stratified space.
Let (M,FM ) be a foliated manifold of class C0 and dimension p.

Lemma 19. Consider a tangentially categorical open set U with its tangen-
tial contraction H : U × I → M . Then H(U, 1) is contained in a set A(U)
which is a finite or countable union of compact (n − p)-submanifolds with
boundary, each one transverse to FM . Moreover, for each leaf L of FM the
intersection L ∩ A(U) is a countable set.

Proof. The first part is [15, Lemma 1.1]. The second part follows from
the fact that each compact transverse submanifold can be covered by a
finite number of adapted charts. Since its dimension is the codimension of
the foliation, its intersection with a leaf is a second countable manifold of
dimension zero. �

Theorem E. If FM is a C0-foliation on the manifold M , we have the
equality Ocat (M,FM ) = catF (M). In the case of a C1 foliation, the four
invariants coincide:

Gcat (M,FM ) = Whcat (M,FM ) = Ocat (M,FM ) = cat F (M).

Proof. We first prove that cat F (M) = Ocat (M,FM ).

• Suppose cat F (M) < ∞. Let U0, . . . , Un be a covering of M by tan-
gentially categorical open sets. Denote by Hi : Ui × I → M a tangential
contraction of Ui and by Ai the set A(Ui) containing Hi(Ui, 1) as in Lemma
19. Let A = A0∪· · ·∪An. Then the set A is transverse to FM in the sense of
Definition 12, and the open sets Ui are A-categorical (Definition 7). Hence
Ocat (M,FM ) ≤ n.

• On the other hand, suppose Ocat (M,FM ) < ∞. Since this infi-
mum must be a minimum, there exists a transverse subset A such that
Ocat (M,FM ) = Ocat (M,A,FM ). Let U be an A-categorical open set and
H be the corresponding stratified homotopy. Then for each leaf L ∈ FM , the
intersection L ∩ A is a countable, thus totally disconnected set. Hence the
image by H(−, 1) of each connected component of L∩U is reduced to a point.
Therefore, U is tangentially categorical, which proves that cat F (M) ≤ n.

Now, Theorems B and C (part (1)) give

Gcat (M,FM ) = Whcat (M,FM ) ≤ Ocat (M,FM ) = cat F (M).

So we just have to prove that Ocat (M,FM ) ≤ Whcat (M,FM ).

• If Whcat (M,FM ) = n, there exists A such that Whcat (M,A,FM ) = n
and A ⋔ FM . By Lemma 1.1 and Proposition 5.1 of [15], there is a subset
B, such that B ⋔ FM and A is a B-SND. Now Theorem C implies the
inequality Ocat (M,FM ) ≤ Whcat (M,FM ). �

Example 20 (Reeb foliation). We ask if for an arbitrary foliation there
exists a transverse subset A such that we have the equality Ocat (M,FM ) =



GANEA AND WHITEHEAD DEFINITIONS FOR TANGENTIAL LS-CATEGORY 13

Ocat (M,A,FM ) and that is an A-SND, i.e. a SND of itself. Here we
construct explicitly such A for the example of the Reeb foliation on T 2, as
described in [6, Section 6.2]. Consider the following representation of the
torus where the upper and lower arcs are identified. At the bottom, the left
and right segments have also to be identified. The strata are the horizontal
lines.

α

β
γ

α

β

γ

In each of these two pictures, a tangential categorical open set is formed
of the colored and hatched areas together with their symmetric relatively to
α ∪ β. Denote it by U . It is deformed into a transverse set A which is the
union of the curves α, β, γ. In the second picture A lies inside U , showing
that A is an A-SND. The tangential deformation of U into A is defined as
follows:

• the dark gray zone of U is deformed on the upper part α of the
vertical line;

• the clear gray zone is deformed on the lower part β of the vertical
line;

• the hatched zone is deformed on the curve γ.
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59655 Villeneuve d’Ascq Cedex, France

E-mail address: Jean-Paul.Doeraene@univ-lille1.fr

Departamento de Xeometria e Topoloxia, Facultade de Matemáticas, Uni-
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