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ABSTRACT. We show here how the techniques based on homotopy pull backs
and push outs lead to simple proofs for apparently difficult (known or un-
known) results. They can be used not only in the category of topological
spaces, but also in any Quillen’s model category. Many of them rely on the
two ‘join theorems’ we prove here. Further applications are the study of holo-
nomy, or of the Lusternik-Schnirelmann category.

Many of the usual constructions in topology are nothing else but homotopy pull
backs, homotopy push outs, or joins (which are a combination of the two formers).
Loop spaces, suspensions, mapping cones, Ganea spaces, Whitehead’s fat wedges,
holonomy, for instance, involve such constructions.

After having defined in section 1 ‘homotopy pull backs’ and ‘homotopy push
outs’ in the general context of a Quillen’s model category, we introduce in section 2
the ‘join’ and ‘smash product’ constructions and give their properties. Section 3 is
quite central as it is devoted to state and prove the two ‘join theorems’ which are
key theorems in the sequel. Section 4 gives applications of the join theorems. Some
known difficult results as those of Ganea (4.3) or Marcum (4.1) appear here are
easy consequences of the join theorems. In section 5 we go further with Ganea’s
‘fibre-cofibre’ and Whitehead’s ‘fat wedge’ constructions. At last, we study the
holonomy of a join of fibration sequences in section 6. All this appears unified by
the same kind of techniques that rely on the same small amount of axioms and
basic properties.

1. BASIC DEFINITIONS AND PROPERTIES

In this section, we recall the definitions of homotopy pull back and homotopy
push out in topology, and extend them to Quillen’s model categories. We also give
their few basic properties ; everything in the sequel rely on the ‘prism lemma’, the
‘four (co)fibrations lemma’ and the ‘cube axiom’ we state at the end of the section.
We keep the text self-contained and, as often as we know, we give references to
similar notions existing in the literature.

We denote by * the base point of any pointed topological space X ; we denote
by I, X the reduced cylinder on X. A pointed topological space is well-pointed if
the inclusion of the base point is a closed cofibration. Let us consider the category
Top® of well-pointed topological spaces and pointed continuous maps between
them. A map H : [.X — Y is a pointed homotopy between pointed maps f and g if
H(z,0) = f(x) and H(x,1) = g(x). In this case we write H : f ~ g. If H and G are
two such homotopies, a map K : I,I,X — Y is a pointed homotopy relative to (f, g)

1
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between H and G if K(z,s,0) = H(x,s),K(z,s,1) = G(x,s), K(z,0,t) = f(x),
and K(z,1,t) = g(z). In this case we write K : H ~ G.

A homotopy commutative diagram in Top™ is a diagram of pointed continuous
maps where each two composites of maps, with same source and target spaces, is
equipped with a pointed homotopy between them —the homotopy between f and
itself being the obvious homotopy H(z,s) = f(x), that we also denote by f—, and
if two composites and/or sum of such homotopies are pointed homotopies between
the same two pointed maps f and g, then there is a pointed homotopy relative to
(f,g) between them.

Definition 1.1. ([21]) A homotopy commutative diagram

p . ¢
g1 g
A B

equipped with H : gf1 ~ fg1, is called a homotopy pull back when for any homotopy
commutative diagram

p P . ¢
g2 g
A B

equipped with G : gfa ~ fgo, the following properties hold :
(i) there exists a map w: D — P (called whisker map) and homotopies K : fo ~
fiw and L : gyw ~ go such that the whole diagram

D-

S

with all maps and homotopies above is homotopy commutative (which means that
goK+How+ foL~G);

(i) if there exists another map w’ : D — P and homotopies K' : fo ~ fiw' and
L' : giw' ~ go such that go K' + How' + fo L' ~ G, then there exists a homotopy
M :w ~ w' such that the whole diagram with all maps and homotopies above is
homotopy commutative (wich means that K + fioM ~ K’ and gyo M + L' ~ L).

C

A B

The notion of homotopy pull back dualizes to the notion of homotopy push out.
‘Dualize’ means here ‘reverse the direction of arrows’.
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There is a ‘standard’ construction of the homotopy pull back of any two maps
f:A— Band g:C — B in Top" as the mapping track :
E;y =2 {(a,w,c) € ATB'TIC | f(a) = w(0) and g(c) = w(1)}

(B! is the free paths space of B) with the obvious maps Efyg— Aand By, — C
and homotopy H : I,Es s — B : ((a,w,c),t) — w(t).
Dually there is a ‘standard’ construction of the homotopy push out of any two
maps f: B— Aand g: B— C in Top" as the mapping torus :
Zrg 2 AN LBIIC / f(b) ~ (b,0) and g(b) ~ (b, 1)

with the obvious maps A — Z;, and C — Z;, and homotopy K : I.B — Z;, :
(b,t) +— (b, t). (See also [21].)

Remark : The homotopy H is an essential data of the homotopy pull back ; for
instance, let QX be the loop space of X and consider the diagram

*

Qx

*

X

Equipped with the homotopy H : I,(QX) — X : (w,t) — w(t), it is a homotopy
pull back. It is not a homotopy pull back equipped with the ‘static’ homotopy
G:L(QX) > X : (w,t) — *

The notions of homotopy pull back and homotopy push out can be extended
to 2-categories (see [9]), Quillen’s model categories (see [23]), Baues’ fibration and
cofibration categories (see [1]) or Majewski’s homotopical categories (see [19]).

From now on, we will assume that C is a pointed Quillen’s model category.
‘Pointed’ means here that there is a zero object (i.e. both final and initial) in the
category, that we denote by . The first axiom ‘M0’ of Quillen can be replaced by
the slightly weaker one : ‘the pull back of any fibration and any map (with same
target) exists and the push out of any cofibration and any map (with same source)
exists’ ; we will keep the terminology ‘model category’ in this case.

We say that an object X of C is fibrant (respectively cofibrant) if X — x is a
fibration (respectively * — X is a cofibration). Let f: A — B and g: C — B be
two maps in C ; let us build the following commutative diagram () :

At . p.9 ¢

12
12
12

A’ D B’ q c’

where A’, B’, C’ are fibrant, either p or q is a fibration, and the maps marked with
~ are weak equivalences. Then the pull back P of p and ¢ is called the homotopy
pull back of f and g. (See also [2], [1], [18], [6], [7], [16], [8].)
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Remark : The condition ‘A’, B’, C’ fibrant’ is not necessary if C is proper (see
[2] 1.2), so in this case one can choose p = f or ¢ = g.

The construction of the homotopy push out is dual. ‘Dualize’ in a model category
means ‘reverse the direction of arrows, keep weak equivalences, change fibrations
to cofibrations, pull backs to push outs, fibrant objects to cofibrant ones’.

The category Top™ is a model category where the weak equivalences are the
homotopy equivalences, and all spaces are both fibrant and cofibrant objects (see
[25]). The standard homotopy pull back is a particular case of the above construc-
tion (1) where p = f, ¢! = E; = {(w,c) € BI'IIC | g(¢) = w(1)}, ¢: E; — B :
(w,¢) = w(0) and P = Ey 4.

Remark : The construction (f) of the homotopy pull back in the model category
C does not necessarily give a homotopy commutative diagram

P C

A B

in C (even if it does in Top®). Indeed the map P — A’ (respectively P —
C’) can not be ‘lifted’ to a map P — A (respectively P — C) because weak
equivalences are not necessarily homotopy equivalences. This makes the theory
of homotopy pull backs very unconfortable to build in C. However there exists
such a commutative diagram in the homotopy category Ho(C), and a homotopy
commutative representative in C.; —~we describe Ho(C) and C.; just below.

The homotopy category Ho(C) of C is the category whose objects are the same as
those of C and whose maps are obtained from those of C by formally inverting the
weak equivalences ([23] 1.1.12). Let C.s be the full subcategory of C whose objects
are those of C which are both cofibrant and fibrant ; the category Ho(C) is equiv-
alent to the quotient category C.s/ ~ whose objects are those of C.; and whose
maps are the homotopy classes of maps of C.y. The obvious functor v : C — Ho(C)
carries weak equivalences to isomorphisms, and homotopy commutative diagrams
to commutative ones.

Remark : The functor v does not carry a homotopy pull back in C to a pull back
in Ho(C). For instance, the zero object x of C is also the zero object of Ho(C), so
for any X there is a pull back in Ho(C)

X X

*

X

which is not the homotopy pull back QX of x — X and * — X.
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As there is a homotopy equivalence relation in C.s, the notion of homotopy
commutative diagram also exists in C.y. The diagrams we shall draw from now on
are homotopy commutative diagrams in C.y. The definition 1.1 of homotopy pull
back now gets sense for homotopy commutative squares in the setting of a model
category. The construction (f) in C above —or more precisely any representative in
C. of its image by 7 in Ho(C), equipped with the appropriate homotopy- satisfies
this definition.

Definitions and notations 1.2. The sign ~ denotes an isomorphism in Ho(C).
We write P ~ A xg C if there is a homotopy pull back

Pf10

91 h.p.b. g

A

7 B

The map f1 will be called homotopy base extension of f (by g). If B ~ %, we
write P~ A x C. If C ~ %, we call P (or the map g1) the homotopy fibre of f,
and we call the sequence of maps P — A — B a fibration sequence. In particular
QX = % X x * is called the loops of X.

Dually, we write S ~ AVg C if there is a homotopy push out

B C
f h.p.o
A S

If C ~ %, we call S the homotopy cofibre of f and we write S ~ A/B. In particular
YX =xVx *~x%/X is called the suspension of X.

Although a homotopy pull back is not a pull back in Ho(C), it has a similar
behaviour : The homotopy base extension of an isomorphism in Ho(C) is an iso-
morphism in Ho(C) ; isomorphic maps in Ho(C) have isomorphic homotopy base
extensions in Ho(C) ; the homotopy pull back of maps with same target is sym-
metric and associative up to isomorphism in Ho(C). This of course dualizes to
homotopy push outs.

The three properties we describe now are basic ones for the techniques using
homotopy pull back and push outs. We call them the prism lemma, the four
(co)fibrations lemma, and the cube aziom. We don’t give the proof here but we
give references for them.
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Lemma 1.3 (Prism Lemma.). (Compare [21] lemmas 12 and 14, [7] 2.5.) Let be a
homotopy commutative diagram

where B — C — C' — B’ is a homotopy pull back and the dotted map is the whisker
map. Then A— B — B’ — A’ is a homotopy pull back if and only if A—C —C" — A’
is a homotopy pull back.

Note the particular case where A’ ~ . In this case, the lemma asserts that if
B —C — (' — B’ is a homotopy pull back, then the maps B — B’ and C' — C’ have
common homotopy fibre A.

As another example, if A — B — C is a cofibration sequence, we see that the
homotopy cofibre of B — C'is ¥ A applying the dual lemma (called ‘prism lemma’,
too) to the diagram :
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Lemma 1.4 (Four fibrations lemma.). ([3]) Let be a homotopy commutative dia-
gram

where D'—C'—B'— A" and D" —C"—B"—A" are homotopy pull backs, the sequences
A— A —- A" B— B — B’ and C — C'" — C” are fibration sequences, and
the maps D — D’ and D' — D" are the whisker maps. Then D —C — B — A is a
homotopy pull back if and only if D — D’ — D" is a fibration sequence.

Note the particular case where A ~ A’ ~ A” ~ x. In this case the three
horizontal squares are fibration sequences, symmetrically to the three remaining
vertical ones.

These two lemmas are plain transposition of properties of the true pull back
in any category, and are consequences of the axioms of model category. As these
axioms are autodual, the dual lemmas are also true. ‘Dualize’ here means ‘reverse
the directions of the arrows, replace homotopy pull backs by homotopy push outs,
fibration sequences by cofibration sequences’.
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Definition 1.5. (Compare [8].) A cube-map is a map f : A — B such that for
any homotopy base extension ' : A’ — B’ of f and any homotopy commutative

diagram
/ ) /
«)L
/ | /
where [’ is the front map, if the bottom face is a homotopy push out, the four
vertical faces are homotopy pull backs, then the top face is a homotopy push out.

Note that the homotopy base extension of a cube-map is a cube-map, and that
the composite of cube-maps is a cube-map.
Now let us state :

Axiom 1.6 (Cube axiom.). All maps are cube-maps.

The category Top* of pointed topological spaces, and in fact also the category
Top® of well-pointed topological spaces, satisfy the cube axiom ([21] theorem 25,
compare [6] chapter 6). Also the category S* of pointed simplicial sets satisfies the
cube axiom ([7] A.8). The category Chain of graded differential modules over a
ring R with unit (bounded below, differential of degree -1) satisfies both the cube
axiom and its dual ([6] chapter 6).

Note the cube axiom is not a consequence of the axioms of model category : if it
was the case, the dual of the cube axiom would also be true in any model category,
but it is not. For instance, in the cube :

SS

i a)‘ |
where the top face is a homotopy pull back and the vertical faces are homotopy
push outs, the bottom face is mot a homotopy pull back ; thus the dual of the

cube axiom is not true in Top™. So the cube axiom breaks the duality between
homotopy pull backs and homotopy push outs.

52 % S8




HOMOTOPY PULL BACKS, HOMOTOPY PUSH OUTS AND JOINS 9

In order to obtain results valid also in categories where the cube axiom is not
satisfied, we will not assume that C satisfies it, and will always specify when we
need a map to be a cube-map. It is clear that isomorphisms in Ho(C), so weak
equivalences in C, are cube-maps. However, applications require that there are
‘as many cube-maps as possible’. Fortunately this is the case for all the model
categories we work with ; more precisely, algebraic categories where topological
spaces are modelized via a covariant functor have many cube-maps, while categories
where topological spaces are modelized via a contravariant functor have many dual
cube-maps (dual notion of 1.5).

Let S(r) be the category of r-reduced simplicial sets (r > 1), and let be S a
multiplicative system in Z (S = {1} if » = 1). The category S(r) is a model category
where weak equivalences are maps f such that S =17, (f) is an isomorphism (see [24]
I1.2). The maps f such that S~17,.(f) is surjective are cube-maps ([8] proposition
11). Take S =Z — {0} ; the diagonal A : S§ — S§ x S§, where Sj is the rational
sphere of dimension 7, is not a cube map.

Let R be a (commutative) principal ideal domain. Let DA, (flat) be the category
of augmented differential algebras with unit over R (bounded below in degree 0,
differential of degree -1), which are flat as R-modules. The category DA (flat)
is a model category where weak equivalences are maps f such that H.(f) is an
isomorphism (see [22], compare [1] 1.7.10 and [7] A.15). The maps f such that
Hy(f) is surjective are cube-maps ([7] A.15).

Let CDA.(c0) be the category of augmented differential commutative algebras
over a field k of caracteristic 0 (bounded below in degree 0, differential of degree +1),
whose augmentation e induces an isomorphism H°(¢). The category CDA.(c0)
is a model category where weak equivalences are maps f such that H*(f) is an
isomorphism (see [13]). The maps f such that H%(f) is an isomorphism and H1(f)
is injective are dual cube-maps ([7] A.19).

2. JOINS AND SMASH PRODUCTS

This section is devoted to present the definitions and basic facts about joins
and smash products. It may serve as a reference for the next sections. Almost
everything here rely on the ‘prism lemma’ (1.3) and the ‘four (co)fibrations lemma’
(1.4).

Definition 2.1. Let A — B and C — B be two maps, and let P ~ A xp C,
J~Avp(C :

A

Then we call J (or the whisker map J — B) the join of A and C over B, and we
write J ~ A xg C. If B ~ *, we just write J ~ A x C'.

Here is the dual notion :
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Definition 2.2. Let B — A and B — C be two maps, and let S ~ AVpg C,
K~A Xg C:

Then we call K (or the whisker map B — K ) the cojoin of A and C under B, and
we write K ~ AQp C. If B ~ *, we just write K ~ A C.

Definition 2.3. An object X is B-sectioned if there is a homotopy commutative
diagram

Amap f: X — Y is said B-sectioned if X andY are B-sectioned and the following
diagram is homotopy commutative

In particular, all objects and all maps are x-sectioned.

The notion we introduce now is a generalization of the smash product to B-
sectioned objects. In particular, this leads to the generalization of the decomposi-
tion of (A x C) to a decomposition of ¥(A x g C) for B-sectionned objects A and
C (2.12).

Let A and C be B-sectioned. Using the prism lemma, we see that all squares in
the following diagram are homotopy push outs :
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B C B
A Avg(C A
B C B

Let us consider the following diagram :

Avg(C

._.‘
A XB C

S

where the exterior square is the homotopy push out above and the dotted map is
the whisker map of the pull back. Let P ~ A xg C and S ~ AV C. We have
P~AdsC and S ~ A xp C, and the whisker map S — P is both the join map
of A and C over P and the cojoin map of A and C' under S.

A

Definition 2.4. Let A and C be B-sectioned. The homotopy cofibre of the map
AVp C — A xpg C above is called the smash pull back of A and C over B and
denoted by AN C. If B ~ %, we call it the smash product and denote it by ANC.

Dually, the homotopy fibre of the map AV C — A xg C is denoted by Abg C.
If B ~ %, we just note it Ab C.

Proposition 2.5. Let A and C be B-sectioned. Then there is a cofibration se-
quence :

B—>ANBC—>E(A/\BC).
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PROOF. Apply the four cofibrations lemma to

Avg(C

4>A[X]CB

O
Corollary 2.6. For any objects A and C, A x C ~3(AAC).
The dual of the previous proposition 2.5 also holds :
Proposition 2.7. Let A and C be B-sectioned. Then there is a fibration sequence :
QAbpC) — A0 C — B.
Corollary 2.8. For any objects A and C, AOC ~Q(AbC).

Proposition 2.9. Let A be B-sectioned and let X — Y be a B-sectioned map. Let
S~YVx B. If A— B is a cube-map, then there is a cofibration sequence

A/\BX—>A/\BY—>A/\BS.

PROOF. By the prism lemma, we have a homotopy push out (}) :

Avp X A

AVBY — +AvVgS

On the other hand, as Ax S — S is the base extension of the cube-map A — B,
the top square of the following cube is a homotopy push out (1) :
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AXBX A
AXBY«J»AXBS
X B

Finally apply the four cofibrations lemma where (t) is the first horizontal face, (1)
is the second horizontal face and the third horizontal face is the expected homotopy
push out. [

If X is B-sectioned, we note XgX = BVx B, and Qg X = B xx B.

Corollary 2.10. Let A and X be B-sectioned. If A — B is a cube-map, then
Z(A AB X) >~ A/\B (EBX>

PROOF. Apply the previous proposition to the B-sectioned map r: X — B. [J

Corollary 2.11. For any objects A and X, if A — * is a cube-map, then we have
S(ANX) ~ AN (EX).

Proposition 2.12. Let A and C be B-sectioned. Then
Y(AxpC)~(Axp C)Vp (B/A)VE (B/C).

PrOOF. Immediate by lemmas 2.16 and 2.18 below. [J

Corollary 2.13. For any objects A and C,
YAxC)~(Ax C)VIEAVIC.
The dual of the above proposition 2.12 also holds :

Proposition 2.14. Let A and C be B-sectioned, and let F' and F' be the homotopy
fibres of B — A and B — C respectively. Then

Q(A\/BC) ~ (AOBC) XBFXBF/.
Corollary 2.15. For any objects A and C,
QAVC)~(AOC) x QA x QC.

We say that a map f : X — Y factorizes through B if there is a homotopy
commutative diagram :

X f e

N,

B

In particular, f is said to be null-homotopic if f factorizes through x.




14 JEAN-PAUL DOERAENE

Lemma 2.16. If A and C are B-sectioned, then the maps A — A xp C and
C — A xp C in the homotopy push out

AXBC C

h.p.o.

A ANBC

factorize through B.
PRrROOF. Look at the top cube of the diagram in the proof of proposition 2.5. J

Lemma 2.17. If X — Y factorizes through B, then (Y/X)~ (B/X)VpY.

PrOOF. Use the prism lemma. O

Lemma 2.18. Let S ~ X Vy Z a homotopy push out, and assume the maps X — S
and Z — S factorize through B. Then XY ~ (B/X)Vp (B/Z)Vgp S.

PROOF. As S ~ X Vy Z, we have Z/Y ~ S/X, and as X — S factorizes
through B, we have S/X ~ (B/X) Vg S. Recall from the Puppe sequence that the
homotopy cofibre of Z — Z/Y is XY. As Z — S factorizes through B, so does
Z — Z]Y. Thus we have XY ~ (B/Z)Vp (Z/Y) ~ (B/Z)Vp (B/X)Vvp S. O

3. JOIN THEOREMS

In this section, we prove two main theorems about joins. They will be key
theorems in the sequel. The first one asserts that the ‘join of homotopy pull backs’
is a homotopy pull back. The second asserts that the ‘join of a homotopy pull
back and a homotopy push out’ is a homotopy push out. The ‘cube axiom’ —or the
notion of ‘cube-map’ (1.5)— plays an essential role here.

Theorem 3.1 (Join theorem 1.). (Compare [7], 2.7.) Let B — B’ be a cube-map,
and let be two homotopy pull backs

A B c

h.p.b. h.p.b.

A/ B/ C/
Then we have a homotopy pull back

ANBC B

h.p.b.

A’ X B C'—— B’



HOMOTOPY PULL BACKS, HOMOTOPY PUSH OUTS AND JOINS 15

Moreover we have two homotopy pull backs

A

AMBC C AMBC

h.p.b. and h.p.b.

A’ — A X B c’ C’ — A X B c’

PRrROOF. Let us consider the following construction :
A Q

Pl —)» O/
A’ / J’/

where P! ~ A'xp/ C', J ~ AVp C' ~ A xp C',Q ~J xg Band P ~ P’ x 4 A.

By the prism lemma, we have also A ¥~ A'x ;,Q,C ~C'x pyQand P ~ P'xc/ C,
P~ AxpgC. The map Q — J' is a cube map as it is the homotopy base extension
of the cube-map B — B’. So P — C — @ — A is a homotopy push out. Thus
Q ~ A xp C. O

P c

N,
N

Theorem 3.2 (Join theorem I1.). Let C' — B’ be a cube-map, and let be a homo-
topy push out and a homotopy pull back

A B c

A B’ c’

(ie. B~ A'"V4 B and C ~ C' xg B). Then we have a homotopy push out

ANBC B

h.p.o.

A’ X B C'—— B’

Moreover we have a homotopy push out
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A A[XIBC

h.p.o.

A’ — A X B/ c’

PROOF. Let us consider the following construction :

A J ~ B
PI—)»C/
A’ S B’
where P~ Axg(C,J~AVpC ~AxgC,S~A'VyJand PP~ A xp C'.
By the prism lemma, we have P ~ A x4 P and B’ ~ SV ; B. AsC' — B’ is

a cube map, P — C — C’ — P’ is a homotopy push out. So by the prism lemma,
S~A'Vp C' . Thus S~ A mp C'. O

P

C

4. APPLICATIONS OF THE JOIN THEOREMS

In this section, we give a collection of applications of the join theorems in the
model category C. In the category Top”, most are known results, but with our
approach, they appear as direct consequences of the join theorems. Note that none
of these results are dualizable, because they all rely on the cube axiom (or cube
maps).

Theorem 4.1. (Compare [20] theorem 1.3.) Let P — A and P — B be any two
maps, M ~ AVp B, and let N — M be a cube-map and N — C be any map. Let
us build the following diagram

Q

-

pan
v %/

F

C
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where E~ B Xy N, F~AXy N,Q~=2PxgE~PxsF and X ~MVyC.
Finally, let be Z ~ PN F ~ P wa F andY ~ BV C. Then there is a homotopy
push out

A X

PROOF. LetJ ~ BVgN ~ B X N. By the join theorem II, we have M ~ AV zJ
(t). Now by the prism lemma, Y ~ BVg C ~ JVx C. Applying the prism lemma
again in the diagram

C Y X

we get X ~ M V;Y (). Finally apply the prism lemma to (1) and (f) to get
X~AvzY. O

Proposition 4.2. Let F — E — B and F' — E’ — B be two fibration sequences.
If x — B is a cube-map, then there is a fibration sequence

FxF — ExgFE — B.

Proor. Immediate by the join theorem I. (]

In particular :

Corollary 4.3. (Compare [10] theorem 1.1.) Let F — E — B be a fibration
sequence. If x — B is a cube-map, then there is a fibration sequence

FxQOB— FExgx*— B.

Proposition 4.4. Let A — B — C be a cofibration sequence and let FF — E — C
be a fibration sequence. If E — C is a cube-map, then the join of B and E over C'
18

ElxchEC\/(FNA)

and the join map is the obvious map C V (F x A) — C.

PRrROOF. By the join theorem II, we have the following homotopy push outs

A FxA

*

h.p.o. h.p.o.

B E x¢ B C
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But by lemma 2.16 we know that A — F x A is null-homotopic, so the left
homotopy push out splits into the two ones :

A * FxA

h.p.o. h.p.o.

B C ~FE xc B
O
Corollary 4.5. (Compare [5] proposition 2.1.) Let A — B — C be a cofibration

sequence and F' — E — C' be a fibration sequence. Let P~ FE x¢c B. If E — C' is
a cube-map, then there is a cofibration sequence

FwxA— B/P—C/E.

Proor. First note that,as F x¢ B~ EVpB,themaps P - Band ¥ — F xX¢ B
have common homotopy cofibre B/P. Now apply the four cofibrations lemma to

the following diagram :

. . R

E

FxA—+1+ + FExegB

L

L > C

[

anva

o/

O

Proposition 4.6. Let A and C be B-sectioned, and B — A and B — C be cube-
maps. Then we have a homotopy pull back :

QBA X B QBC—> B

h.p.b.

AVvg(C—Axg(C
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PROOF. Let P ~ AxgC. We have B ~ A xp C by the prism lemma, so
Axp C ~ AvVvp C, as we did already notice above. The map C' — P is a cube-
map, as it is the homotopy base extension of B — A ; thus the map B — P is a
cube-map, as it is the composite of B — C' and C' — P. Now the join theorem I
applied to the diagram

QpC B QpA

h.p.b. h.p.b.

gives the result. [J

Corollary 4.7. For any objects A and C, if ¥ — A and x — C are cube-maps,
then

AbC ~ QA x QC.

To end this section, we show that the associativity of the join construction also
rely on the join theorems.

Theorem 4.8 (Associativity of the join.). (Compare [15] 3.74.) Let be two cube-
maps A — D and C — D and any third map B — D. Then

(A[X]DB) MDCZA[X]D (BNDC>

PRrROOF. Let us consider the following construction :
P B

A M D

where P~ AxpB, E~BxpC, F~AxpC,Q~=PxsF~PxgE~FXcE,
M~ AVpB~Awxp B,and N ~ MxpC. AsC — Disacube-map, N ~ F x¢g FE
by the join theorem I.

Let X ~ MVNC ~M xp C~(Axp B) xpC. Now let Z ~ P x4 F and
Y ~BVg(C~B xp C. As A — D is a cube-map, Z >~ A xXp Y by the join
theorem I.

Note that N — M is a cube-map because it is the homotopy base extension
of the cube-map C — D. Applying theorem 4.1 to the interior cube of the above
diagram prolonged by the homotopy push out X ~ MV yC, we obtain X ~ AV ;Y.
Since Z ~AxpY,wehave X ~AxpY ~Axp (BxpC). O

Q

A7

N

E

C
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5. GANEA AND FAT WEDGE CONSTRUCTIONS

Ganea spaces and Whitehead’s fat wedges play a crucial role in the study of the
Lusternik-Schnirelmann category. In fact, they are not else but some particular
join constructions. We present here these notions in a model category. (See also
[7], [14], [3], [4], [5] for further development.)

Definition 5.1. For any object B, the nth Ganea object G, B and Ganea map
gn : GnB — B are defined inductively by : go : GoB ~ * — B and

gn:GpnB~G,_1B Xp*— B
is the join of g,—1 and gg.
Proposition 5.2. If x — B is a cube-map, then Gpq4ni1B ~ G, B xp G, B.
PrRoOF. This is just the associativity of the join. [
Proposition 5.3. If x — B is a cube-map, then there is a fibration sequence
OB x QB X...x QB (n+1 times) — G,B — B.

PROOF. First note that 2B — % is a cube-map as it is the homotopy base
extension of * — B, so the join of loops is associative. Now the result follows
directly from corollary 4.3 by recursivity. U

Let us define the diagonals A, : B — B" ~ B x B x ... x B (n times) of any
object B, inductively by Ay : B — * and A,, is the whisker map induced by the
maps 1g : B — B and A,,_; : B — B" ! and the following homotopy pull back :

B ~ B x Bn71_>Bn71
h.p.b.

B

*

Definition 5.4. For any object B, the nth fat wedge T,,B and fat wedge map
tn : T,B — B"T! are defined inductively by : to: ToB ~ * — B and

tp: TpB ~ B" wpgni1 (T,_1B x B) — B"™!

is the join of the obvious (whisker) maps B™ ~ B™ x ¥+ — B"™ x B ~ B"T! and
T,.1Bx B — B" x B~ B!,

Theorem 5.5. (Compare [12] 4.3, [7] 3.11.) Assume A,, : B — B" is a cube-map
for alln > 1. Then for all n > 1 there is a homotopy pull back

G,B T.B

9n h.p.b. tn
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PROOF. By induction on n. The case n = 0 is immediate as gy = to and A is
the identity. Assume the result is known to be true for n = m — 1.
Applying the prism lemma in the diagram

Gmle—"Tmle X B—>Tmle

B

B™ x B B™

Am+1

we obtain that the left square is a homotopy pull back (t).
On the other hand, applying the prism lemma in the diagram

B

B™ x B B

m+1

we obtain that the left square is a homotopy pull back (1).
Now apply the join theorem I to (1) and () to get the result for n = m. O

Corollary 5.6. Assume A, : B — B™ is a cube-map for all n > 1. Then for
all n > 1, g, has a homotopy section if and only if A,y admits a homotopy
factorization through t.,.

PrOOF. The section s: B — G, B of g, is the whisker map induced by 15 : B —
B, the map [ : B — T,, B in the factorization of A, ;1 and the homotopy pull back
of the theorem 5.5. J

6. HoLoNOMY

This section is devoted to study the relation between join and holonomy. The
main theorem 6.2 here asserts that the holonomy of the ‘join of fibration sequences’
is the ‘join of the holonomies’ of the fibration sequences.

Let F — E — B be a fibration sequence. Let us consider the following dia-
gram (f) :
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where the map h : QB x F' — F' is the whisker map of the front homotopy pull
back F' ~ E x g *. The prism lemma shows that the top and left faces of the cube
are homotopy pull backs.

Definition 6.1. The whisker map h : QB x F — F in the diagram above is called
the holonomy of the fibration sequence ' — E — B.

Let be a homotopy commutative diagram

A’ B’ c’

The obvious (whisker) map A xp C — A’ xp: C' is called the join of f and h over
g.

Theorem 6.2. Let F — E — B and F' — E' — B be two fibration sequences,
andleth: QBXF — F and b/ : QB x F' — F’ respectively be their holonomies. If
x — B if a cube-map, then the holonomy of the fibration sequence F X F' — E Xp
E’ — B is the join of the holonomies h and h' over QB — x.

PrRoOOF. Let us consider the join

J~ (2B x F) xap (OB x F')

of the maps QB x F — QB and QOB x F' — QB in the diagram () above, and the
corresponding one with primes. Let us also consider the join of the maps F — x
and F' — x. Putting all this together we get the following diagram (1) :



HOMOTOPY PULL BACKS, HOMOTOPY PUSH OUTS AND JOINS 23

OB x (F x F') OB x F'

e

OB x F l J

F x F. F

VAR

o' M L

~ OB

where the five vertical squares are homotopy pull backs and the two horizontal
squares are homotopy push outs. Indeed this diagram is nothing else but the
construction of the join theorem I applied to the two top faces of the diagram
() and of the corresponding one with primes. By construction (and the prism
lemma), the maps QB x F — F and QB x F' — F’ are the holonomies and the
map J — F x F’ is their join.

Furthermore, let us consider the join of the maps F — B and E’ — B. Applying
(four times) the join theorem I to the diagram () of homotopy pull backs above,
and the corresponding one with primes, we get the diagram :

L

EIXIBE/ B

where the front, top, rear and bottom faces are homotopy pull backs. By the prism
lemma, the left face is also a homotopy pull back. Thus by definition, the map
z:J — F x F'is the holonomy of the fibration sequence F' x F' — E xp E' — B.
|

Corollary 6.3. Let FF— E — B be a fibration sequence. If x — B if a cube-map,
then the holonomy of the fibration sequence F' x QB — E X pg * — B is the join of
the holonomies QB x F — F and QB x QB — QB over QB — .
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