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WHEN DOES SECAT EQUAL RELCAT ?

JEAN-PAUL DOERAENE AND MOHAMMED EL HAOUARI

Abstract. In [3] the authors introduced a relative category for a map that

differs from the sectional category by just one. The relative category has

specific properties (for instance a homotopy pushout does not increase it) which
make it a convenient tool to study the sectional category. The question to

know when secat equals relcat arises. We give here some sufficient conditions.

Applications are given to the topological complexity, which is nothing but the
sectional category of the diagonal.

In [3], we have introduced an approximation of James’ sectional category of a
map that we called relative category. For any continuous map ι : A → X, we
have secat (ι) 6 relcat (ι) 6 secat (ι) + 1. It is an important information to know
whether secat (ι) = relcat (ι). For instance, when the equality holds, if C is the
homotopy cofibre of ι, we have cat (C) 6 secat (ι) 6 cat (X), see Corollary 5. For
the null map 0X : ∗ → X, the equality is trivial: secat (0X) = relcat (0X) = cat (X).
Here we establish the equality in three cases: the homotopy fibre of a map that
has a homotopy section, see Proposition 8; the diagonal map of a connected CW
H-space, see Theorem 11; and a (q − 1)-connected map ι : A→ X where A is CW
with dimA < (secat (ι) + 1)q − 1, see Theorem 14.

We work indifferently in the category of topological spaces Top or in the cate-
gory of well-pointed topological spaces Topw (well-pointed means that the inclusion
of the base point is a closed cofibration) [9]. We will denote these categories am-
bigously by T . However for most applications (for instance when we speak of
homotopy fibre or cofibre) we need the category to be pointed (the zero object will
be denoted by ∗). All constructions are made ‘up to homotopy’.

We use the same notations as in [3]. The homotopy pullback of maps f : A→ B
and g : C → B is denoted by A×B C. If there are maps p : D → A and q : D → C
such that f ◦ p ' g ◦ q, the ‘whisker’ map D → A×B C induced by the homotopy
pullback is denoted by (p, q). The homotopy pushout of maps v : U → V and
w : U → W is denoted by V ∨U W . If there are maps y : V → X and z : W → X
such that y ◦ v ' z ◦w, the ‘whisker’ map V ∨U W → X induced by the homotopy
pushout is denoted by (y, z). If W ' ∗, then V ∨U ∗ is the homotopy cofibre
of v and is denoted by V/U . Finally the join of f and g is the whisker map
(f, g) : A ∨P C → B where P ' A×B C; A ∨P C is denoted by A ./B C. For basic
definitions and properties about homotopy pullbacks and pushouts, we refer to [7]
or [2].
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1. Sectional and relative categories

Definition 1. For any map ιX : A→ X of T , the Ganea construction of ιX is the
following sequence of homotopy commutative diagrams (i > 0):

A

αi+1 ""

ιX

**Fi

βi   

ηi

>>

Gi+1 gi+1 // X

Gi

γi
<<

gi

44

where the outside square is a homotopy pullback, the inside square is a homotopy
pushout and the map gi+1 = (gi, ιX) : Gi+1 → X is the whisker map induced by
this homotopy pushout. The iteration starts with g0 = ιX : A→ X.

We denote Gi by Gi(ιX), or by Gi(X,A). If T is pointed, we write Gi(X) =
Gi(X, ∗).

The sequence of homotopy commutative diagrams above extends to:

A

αi+1 ""

ιX

**A θi //

αi

))

Fi
βi

  

ηi

>>

Gi+1 gi+1 // X

Gi

γi
<<<<

gi

44

where α0 = idA. Since gi ◦ αi ' ιX , the outside square commutes up to homotopy
and the homotopy pullback Fi induces the whisker map θi = (αi, idA) : A → Fi.
Notice also that γi ◦ αi ' αi+1.

Proposition 2. For any map ιX : A → X in T , we have Gi(ιX) ' ./i+1
X A, i.e.

the (i+ 1)-fold join of A over X, and Fi(ιX) ' ./i+1
A F0(ιX).

Proof. By definition, Gi ' ./i+1
X A. From the Join theorem, see [1], which asserts

that, roughly speaking, the join of homotopy pullbacks is a homotopy pullback, we
deduce that the following square is a homotopy pullback:

./i+1
A F0

gi(η0) //

��

A

ιX

��
Gi

gi(ιX)
// X

This means that Fi ' ./i+1
A F0. �

Definition 3. Let ιX : A→ X be a map of T .
1) The sectional category of ιX is the least integer n such that the map gn : Gn(ιX)→

X has a homotopy section, i.e. there exists a map σ : X → Gn(ιX) such that
gn ◦ σ ' idX .
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2) The relative category of ιX is the least integer n such that the map gn : Gn(ιX)→
X has a homotopy section σ and σ ◦ ιX ' αn.

We denote the sectional category by secat (ιX) or secat (X,A), and the relative
category by relcat (ιX) or relcat (X,A). If T is pointed with ∗ as zero object, we
write cat (X) = secat (X, ∗) = relcat (X, ∗). The integer cat (X) is the ‘normalized’
version of the Lusternik-Schnirelmann category.

The following basic facts about secat and relcat are proved in [3]:

Proposition 4. Suppose we are given any homotopy commutative diagram in T :

B
κY //

ζ

��

Y

f

��
A

ιX
// X

1) If f has a homotopy section, then secat (ιX) 6 secat (κY ).
2) If f has a homotopy section s, ζ has a homotopy section t, and s◦ιX ' κY ◦t,

then relcat (ιX) 6 relcat (κY ).
3) If the square is a homotopy pullback, then

secat (κY ) 6 secat (ιX) and relcat (κY ) 6 relcat (ιX).
4) If the square is a homotopy pushout, then relcat (ιX) 6 relcat (κY ).
5) If f and ζ have homotopy inverses, then

secat (ιX) = secat (κY ) and relcat (ιX) = relcat (κY ).

Two particular cases (of statements 1 and 4) are worth to be remarked: For any
map ιX : A→ X, we have secat (ιX) 6 cat (X) and cat (X/A) 6 relcat (ιX).

The following immediate consequence inlights the importance of knowing when
sectional and relative categories coincide:

Corollary 5. For any map ιX : A→ X with homotopy cofibre X/A, if secat ιX =
relcat ιX , then

cat (X/A) 6 secat (ιX) 6 cat (X).

Recall that in general cat (X/A) 6 cat (X)+1. It is important to note that if the
sectional and relative categories of a map are equal, the category of its homotopy
cofibre cannot be greater than the category of its target.

The following other consequence of Proposition 4 will be useful:

Proposition 6. If ιX : A → X and f : Y → X are maps of T , consider the
following join construction:

A

ιJ ��
ιX

))
B

κY   

ζ
>>

J j // X

Y

q
??

f

55

where the outside square is a homotopy pullback, the inside square is a homotopy
pushout, and the map j = (f, ιX) : J → X is the whisker map induced by the
homotopy pushout. We have

relcat (ιJ) 6 relcat (κY ) 6 relcat (ιX).
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Moreover, if f has a homotopy section, then

relcat (ιJ) = relcat (κY ) = relcat (ιX).

Proof. The inequalities are direct applications of Proposition 4, statements 3 and
4.

If s is a homotopy section of f , the Prism lemma (see [2] for instance) gives the
two homotopy pullbacks:

A
t //

ιX

��

B

κY

��

ζ // A

ιX

��
X

s
// Y

f
// X

and ζ◦t ' idA. We have j◦q◦s ' f◦s ' idX , so q◦s is a homotopy section of j. Also
we have q ◦s◦ ιX ' q ◦κY ◦ t ' ιJ ◦ζ ◦ t ' ιJ , and we obtain relcat (ιX) 6 relcat (ιJ)
by Proposition 4, statement 2. �

An interesting particular case of Proposition 6 is this one:

Corollary 7. Let i : F → E be the homotopy fibre of f : E → B and E/F be the
homotopy cofibre of i. Then:

cat (E/F ) 6 relcat (i) 6 cat (B).

2. Comparing sectional and relative categories

We obtain a first sufficient condition for the equality of sectional and relative
categories of a map:

Proposition 8. Let i : F → E be the homotopy fibre of f : E → B. If f has a
homotopy section then cat (E/F ) = relcat (i) = cat (B) = secat (i).

Proof. The first two equalities are direct applications of Proposition 6. Proposi-
tion 4, statements 1 and 3, imply the third equality. �

Example 9. The map in1 = (idA, 0) : A → A × B is the (homotopy) fibre of
pr2 : A×B → B, thus cat ((A×B)/A) = secat (in1) = relcat (in1) = cat (B).

For any X in T , and m > 2, recall from [8], that the higher topological complexity
TCm(X) is defined as TCm(X) = secat (∆m), i.e. it is the sectional category of
the diagonal ∆m : X → Xm. Farber’s topological complexity TC (X) = TC 2(X).
(Originally, there was a shift by one; we use here the ‘normalized’ definition.)

Proposition 10. For any X in T , and m > 2, we have

cat (Xm−1) 6 TCm(X) 6 cat (Xm).

Proof. Follows from Proposition 4, see [3]. �

Theorem 11. Let X be a connected, CW H-space. For any m > 2, we have

cat (Xm/X) = TCm(X) = secat (∆m) = relcat (∆m) = cat (Xm−1).
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Proof. It is shown in [6] that for a connected CW H-space X, there is a homotopy
pullback:

X

��

∆m

// Xm

fm−1

��
∗ // Xm−1

and fm−1 has an obvious homotopy section. Thus we obtain the desired equalities
by Proposition 8. �

Our own contribution here is the equality secat (∆m) = relcat (∆m). The equal-
ity secat (∆m) = cat (Xm−1) is shown in [6] and the equality cat (Xm/X) =
secat (∆m) is shown in [4].

We proved the next result indirectly in [3]. We give here a direct proof for
convenience.

Proposition 12. For any map ιX : A→ X of T , we have:

secat (ιX) 6 relcat (ιX) 6 secat (ιX) + 1.

Proof. Let secat (ιX) 6 n. Consider any homotopy section σ : X → Gn of gn : Gn →
X and let σ+ = γn ◦ σ. Following the proof of Proposition 6, we have that
σ+ is a homotopy section of gn+1 and σ+ ◦ ιX ' αn+1. We have obtained that
relcat (ιX) 6 n+ 1. �

Let be given any map ιX : A→ X with secat (ιX) 6 n and any homotopy section
σ : X → Gn of gn : Gn → X. Consider the following homotopy pullbacks:

P

π′

��

π // A

θn
��

A
σ̄
//

ιX

��

Fn ηn
//

βn

��

A

ιX

��
X

σ
// Gn gn

// X

By the Prism lemma, we know that the homotopy pullback of σ and βn is indeed A,
and that ηn◦σ̄ ' idA. Also notice that π ' π′ since π ' ηn◦θn◦π ' ηn◦σ̄◦π′ ' π′.

Proposition 13. Let be given any map ιX : A → X with secat (ιX) 6 n and any
homotopy section σ : X → Gn(ιX) of gn : Gn(ιX)→ X. With the same definitions
and notations as above, the following conditions are equivalent:

(i) σ ◦ ιX ' αn.
(ii) π has a homotopy section.

(iii) π is a homotopy epimorphism.
(iv) θn ' σ̄.

Proof. We have the following sequence of implications:
(i) =⇒ (ii): Since σ ◦ ιX ' αn ' βn ◦ θn ◦ idA, we have a whisker map

(ιX , idA) : A→ P induced by the homotopy pullback P which is a homotopy section
of π.

(ii) =⇒ (iii): Obvious.
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(iii) =⇒ (iv): We have θn ◦ π ' σ̄ ◦ π since π ' π′. Thus θn ' σ̄ since π is a
homotopy epimorphism.

(iv) =⇒ (i): We have σ ◦ ιX ' βn ◦ σ̄ ' βn ◦ θn ' αn. �

Theorem 14. Let be given a CW-complex A and a (q−1)-connected map ιX : A→
X. If dimA < (secat ιX + 1)q − 1 then secat ιX = relcat ιX .

Proof. Recall that gi is the (i + 1)-fold join of ιX . Thus by [7], Theorem 47, we
obtain that, for each i > 0, gi : Gi → X is (i + 1)q − 1-connected. As gi and
ηi have the same homotopy fibre, the Five lemma implies that ηi : Fi → A is
(i + 1)q − 1-connected, too. By [10], Theorem IV.7.16, this means that for every
CW-complex K with dimK < (i+ 1)q− 1, ηi induces a one-to-one correspondence
[K,Fi] → [K,A]. Since θn and σ̄ are both homotopy sections of ηn, we obtain
θn ' σ̄, and Proposition 13 implies the desired result. �

Example 15. Let ι : Sr → Sm with r > m. If r < 2m−1, then relcat (ι) = secat (ι);
this is 1 except for the identity for which it is 0. In particular this means that
α1 : Sr → Sr ./Sm Sr factorizes through ι up to homotopy.

Example 16. Let h be any of the Hopf maps S3 → S2, S7 → S4 and S15 → S8.
Since they have a target of category 1 and a homotopy cofibre of category 2, we
have secath = 1 while relcath = 2. This is a conterexample wich illustrates that
the inequality in the hypothesis of Theorem 14 is sharp, because in the three cases
we have exactly dimA = (secath+ 1)q − 1.

In [3], we have introduced the complexity of a map ιX : A→ X; we write TC (ι) =
secat (idA, ιX) where (idA, ιX) : A → A × X is the whisker map induced by the
homotopy pullback. In particular the complexity of the null map ∗ → X is cat (X)
(see Example 9) and the complexity of idX is secat (∆) = TC (X). We will also
write relTC (ιX) = relcat (idA, ιX).

Proposition 17. For any map ιX : A→ X in T , we have:

cat (X) 6 TC (ιX) 6 TC (X) 6 cat (X ×X).

Proof. Follows from Proposition 4, see [3]. �

Applying Theorem 14 to topological complexity, we obtain:

Corollary 18. Let be given any map ιX : A → X between CW-complexes, A con-
nected and X (q − 1)-connected. If dimA < (TC (ιX) + 1)q − 1, then

cat ((A×X)/A) 6 relTC (ιX) = TC (ιX) 6 cat (A×X)

where (A×X)/A is the homotopy cofibre of (idA, ιX).

Proof. With the hypothesis, (idA, ιX) is (q− 1)-connected, and we may apply The-
orem 14 to obtain the equality. This implies the inequalities by Corollary 5. �

The first inequality is proved in [4] for the particular case ιX = idX .

Example 19. Consider the Hopf fibration S7 → S4 and factor by the action of
S1 on S7 to get ι : CP 3 → S4. We have shown in [3] that TC (ι) = 2. We have
dimCP 3 = 6 < 3.4− 1 = (TC (ι) + 1).q − 1, so relTC (ι) = TC (ι) = 2.
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Example 20. More generally assume A is a connected CW-complex and consider
any map ι : A→ Sm. We have TC (ι) > cat (Sm) = 1 and Sm is (m−1)-connected.
Thus if dimA < 2m− 1, we have relTC (ι) = TC (ι).

For the particular case ι = idSm , dimSm < 2m − 1 for any m > 2, so we have
relTC (Sm) = TC (Sm) for any m > 2.

3. Open problems

Let be given a map ιX : A → X. Consider the map αi : A → Gi(ιX) of the
Ganea construction 1. In [3], we showed that relcat (αi) = secat (αi) = i for
i 6 secat (ιX) and relcat (αi) = relcat (ιX) for i > relcat (ιX). We have no evidence
that relcat (αi) = secat (αi) for any i but we think it would be true:

Conjecture 21. For any map ιX : A→ X, any i > 0, we have

secat (αi) = relcat (αi) = min{i, relcat (ιX)}.

Another more tricky conjecture is:

Conjecture 22. For any map ιX : A→ X, if ιX has a homotopy retraction, then
we have secat (ιX) = relcat (ιX).

A positive answer to this question would imply that TC (X) = relTC (X) for any
X and even TC (ι) = relTC (ι) for any map ιX : A→ X, since (idA, ιX) : A→ A×X
has an obvious (homotopy) retraction pr1 : A×X → A.

As the referee noticed, it is likely that relTC equals the monoidal topological
complexity introduced by Iwase and Sakai [5].
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